Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Org Inorg Au ; 4(2): 141-187, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38585515

RESUMO

Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.

2.
ACS Mater Au ; 4(2): 174-178, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38496045

RESUMO

Poly(hydroxybutyrate) is a biocompatible, biodegradable polyester synthesized naturally in a variety of microbial species. A greener alternative to petroleum-based plastics and sought after for biomedical applications, poly(hydroxybutyrate) has failed to break through as a leading material in the plastic industry due to its high cost of production. Specifically, the extraction of this material from within bacterial cells requires lysis of cells, which takes time, uses harsh chemicals, and starts the process again with growing new living cells. Recently, surface display of enzymes on bacterial membranes has become an emerging technique for extracellular biocatalysis. In this work, a fusion protein lpp-ompA-phaC was expressed in Escherichia coli to display the enzyme poly(hydroxyalkanoate) synthase on the cell surface. The resulting poly(hydroxybutyrate) product was chemically characterized by nuclear magnetic resonance and infrared spectroscopy. Finally, the extracellular synthesis of the bioplastic granules was demonstrated qualitatively via microscopy and quantitatively by flow cytometry. The results of this work are the first demonstration of extracellular synthesis of poly(hydroxybutyrate), showing promise for continuous and scalable synthesis of materials using surface display.

3.
J Phys Chem B ; 125(43): 11820-11834, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34677956

RESUMO

Electrochemical sensors have emerged as important diagnostic tools in recent years, due to their simplicity and ease of use. Compared to instrumental analysis methods that use complicated experimental and data analysis techniques─such as mass spectrometry, nuclear magnetic resonance (NMR), spectrophotometric methods, and chromatography─electrochemical sensors show promise for use in a wide range of real-time and in situ applications such as pharmaceutical testing, environmental monitoring, and medical diagnostics. In order to identify analytes in complex and/or biological samples, materials used for both the electrode materials and the chemically selective layer have been evolving throughout the years for optimizing the analytical performance of electrochemical sensors to increase sensitivity, selectivity and linear range. In this Perspective, attention will be focused on different types of materials that have been used for electrochemical sensing, including new combinations of well-studied materials as well as novel strategies to enhance the performance of sensing devices. The Perspective will also discuss existing challenges in the field and future strategies for addressing those challenges.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos
4.
iScience ; 24(9): 103033, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34522869

RESUMO

Phenazines are redox-active nitrogen-containing heterocyclic compounds that can be produced by either bacteria or synthetic approaches. As an electron shuttles (mediators), phenazines are involved in several biological processes facilitating extracellular electron transfer (EET). Therefore, it is of great importance to understand the structural and electronic properties of phenazines that promote EET in microbial electrochemical systems. Our previous study experimentally investigated a phenazine-based library as an exogenous mediator system to facilitate EET in Escherichia coli. Herein, we combine our experimental data with density functional theory (DFT) calculations and multivariate linear regression modeling to understand the structure-function relationships in phenazine-based mediated EET. These calculations demonstrate that the computed redox properties of phenazines in lipophilic environments (e.g., cell membrane) correlate to experimental mediated current densities. Additional DFT-derived molecular properties were considered to develop a predictive model, which could be used in metabolic engineering approaches to introduce phenazines as endogenous mediators into bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...